МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет « МИФИ »

Снежинский физико-технический институт-

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет « МИФИ »

(СФТИ НИЯУ МИФИ)

Кафедра: <u>АИиВС</u> (наименование кафедры)

ОТЧЕТ ПО КУРСОВОМУ ПРОЕКТУ

по курсу <u>Теория автоматов</u> (наименование учебной дисциплины)

на тему «Синтез цифровых управляющих автоматов»

Студент	<i>Группа</i> : ПАС-30Д Домрачева Ю.К
Студент	Горшкова А.К.
Преподаватель	Крушный В.В.

Снежинск 2022 г.

Содержание

Введение	3
1 Канонический метод структурного синтеза	4
2 Синтез цифрового автомата по граф-схеме алгоритма	8
2.2 Отмеченная ГСА	10
2.3 Структурный синтез автомата	12
3 Синтез автомата с программируемой логикой	14
3.1 Адресация микрокоманд с двумя принудительными адресами	14
3.2 Адресация микрокоманд с одним принудительным адресом (инкремент текущего адреса)	16
3.3 Адресация микрокоманд с одним принудительным адресом (инкремент адреса перехода)	18
3.4 Естественная адресация	20
Заключение	23
Список литературы	24

Введение

Данная курсовая работа состоит из трёх разделов. В первом разделе представлен синтез цифрового автомата по каноническому методу структурного синтеза. Результатом этого метода является система логических уравнений и комбинационная логическая схема, реализующих данную систему.

Структурный синтез цифрового автомата выполнен на основании заданных таблицы переходов и таблицы выходов. Для того чтобы реализовать автомат по данному методу выполнено следующее:

- 1) структуризация входов, выходов и состояний автомата;
- 2) кодировка входных, выходных сигналов и внутренних состояний автомата;
- 3) получение кодированных таблиц переходов и выходов структурного автомата;
 - 4) получение логических функций по кодированным таблицам;
- 5) построение функционально-логической схемы автомата на основании полученных в результате синтеза логических функций.

Во втором разделе представлен цифровой автомат по ГСА, выполнен структурный синтез автомата.

В третьем разделе представлен синтез автомата с жёсткой и программируемой логикой по трем видам адресации.

1 Канонический метод структурного синтеза

Выполнен структурный синтез частичного автомата А, заданного своими таблицами переходов и выходов, представленных в таблице 1.1 и таблице 1.2.

Таблица 1.1 – Таблица переходов

Таблица 1. 2 – Таблица выходов

δ	a_1	a_2	a_3	a ₄
\mathbf{Z}_1	\mathbf{a}_3	-	a_2	a_1
\mathbf{Z}_2	-	a_2	a_4	-
Z 3	a_2	a_3	-	a_3

λ	a_1	a_2	a_3	a_4
\mathbf{Z}_1	\mathbf{W}_1	-	W ₂	W 3
\mathbf{Z}_2	ı	W_2	W ₃	-
Z 3	W 2	W 3	-	W 3

В качестве элементов памяти используется Т –триггер.

Произведена кодировка входных, выходных сигналов и внутренних состояний автомата. Количество входных абстрактных сигналов F=3, количество входных структурных сигналов $n=\log_2 F=\log_2 F=1$ $\log_2 F=1$, то есть $X=\{x1, x2\}$. Количество выходных абстрактных сигналов G=3, количество выходных структурных сигналов G=3, количество выходных структурных сигналов G=3, количество выходных структурных сигналов G=3, количество внутренних состояний абстрактного автомата G=3, количество двоичных элементов памяти (триггеров) G=30 G=31 G=32.

Кодирование входных, выходных сигналов и внутренних состояний представлено в таблицах 1.3 -1.5.

Таблица 1.3 — Кодирование входных сигналов

Z	\mathbf{x}_1	X 2
\mathbf{Z}_1	0	0
\mathbf{Z}_2	0	1
\mathbf{Z}_3	1	0

Таблица 1.4 – Кодирование выходных сигналов

W	y ₁	y ₂
\mathbf{W}_1	0	0
\mathbf{w}_2	0	1
\mathbf{W}_3	1	0

Таблица 1.5 – Кодирование выхолных сигналов

A	Q_1	Q_2
a_1	0	0
a_2	0	1
a_3	1	0
a_4	1	1

Кодированные таблицы переходов и выходов структурного автомата представлены на таблицах 1.3-1.5. В таблицах переходов и выходов исходного абстрактного автомата z_i , w_i , a, i заменены соответствующие коды. Кодированные таблицы переходов и выходов представлены в таблицах 1.6 и 1.7.

		a_1	a_2	a_3	a_4
	Q_1Q_2 x_1x_2	00	01	10	11
z_1	00	10	ı	01	00
z_2	01	ľ	01	11	-
z_3	10	01	10	-	10

		a_1	a_2	a_3	a_4
	Q_1Q_2 x_1x_2	00	01	10	11
z ₁	00	00	-	01	10
Z ₂	01	ı	01	10	ı
Z 3	10	01	10	-	00

В кодированной таблице переходов заданы функции:

$$Q_1^{t+1} = \square_1(x_1, x_2, Q_1^t, Q_2^t),$$

$$Q_2^{t+1} = \square_2(x_1, x_2, Q_1^t, Q_2^t).$$

В кодированной таблице выходов заданы функции:

$$y_1 = \phi_1(x_1, x_2, Q_1^t, Q_2^t), y_2 = \phi_2(x_1, x_2, Q_1^t, Q_2^t).$$

При каноническом методе синтез сведен к получению функций:

$$y_1 = \phi_1(x_1, x_2, Q_1, Q_2);$$

$$y_2 = \phi_2(x_1, x_2, Q_1, Q_2);$$

$$T_1 = f_1(x_1, x_2, Q_1, Q_2);$$

$$T_2 = f_2(x_1, x_2, Q_1, Q_2).$$

Функции y_1 и y_2 получены из кодированной таблицы выходов.

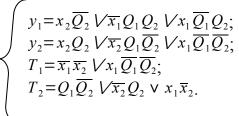
Карты Карно для минимизации выражения для y_1 и y_2 изображены на рисунке 1.1.

	00	01	11	10
00		-	1	
01	-		-	1
11	-	-	-	-
10		1		1

xì	Q1 Q2	00		01	11		10	
F	00			-			1	
	01	-		1	-			
	11	-		-	-		-	
	10	1	<u> </u>			+	-	

a б Рисунок 1.1 – Карты Карно для $y_1\left(a\right)$ и $y_2\left(\delta\right)$ Результат минимизации представлен в выражении (1):

С помощью таблицы функций возбуждения (Таблица 1.8) выведены выражения для Т1 и Т2. Используя код исходного состояния автомата и код состояния перехода на основании таблицы входов триггера, найдено требуемое возбуждения, представленное функций выражение рисунке обеспечивающее заданный переход.


Тоблицо 1 9 Тоблицо функций возбужности

Табли	ца 1.8	8 – Ta	блица (рункц	ИЙ :	возб	ужде	кин			
Q1Q2 X ₁ X ₂	00	01	10	11							
00	10	-	11	11	-						
01	-	00	01	-							
10	01	11	-	01							
			← T1T2		_	Q1Q2					
Q1Q2	00	01					00	01	11	10	
x_1x_2	00	01	11 10		x_1x_2	00		t -	1	1	
00	1	-	1 1					<u> </u>	/	1	
01	Рису	/нок 1	.2 - Ka	рты К	арн	ОДЛ	я T ₁ (а) и '	Γ_2 (δ	1	
	- (\rightarrow				11	_	_	-	-	
11	-	- -	- -			10	/ 1	(a)	1	+	
10		$1 \parallel$		_		10	/ 1	g	1		
		ال						ı		الح	l
		a									
T _	~ ~	V/v	o ō 2	2							

$$T_1 = \bar{x}_1 \bar{x}_2 \, \forall x_1 \, Q_1 \bar{Q}_2^{2} \tag{2}$$

На основании полученных в результате синтеза булевых выражений (1), (2) построена функционально-логическая схема автомата, изображённая на рисунке 1.3.

Для этого уравнения 1 и 2 представлены в виде:

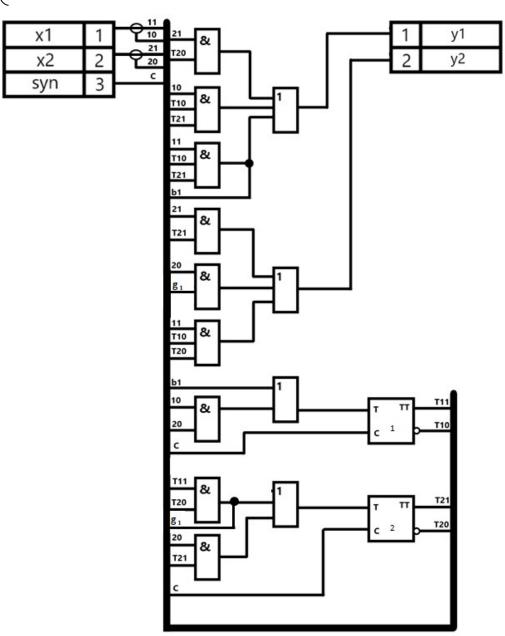


Рисунок 1.3 – Функционально-логическая схема автомата

2 Синтез цифрового автомата по граф-схеме алгоритма

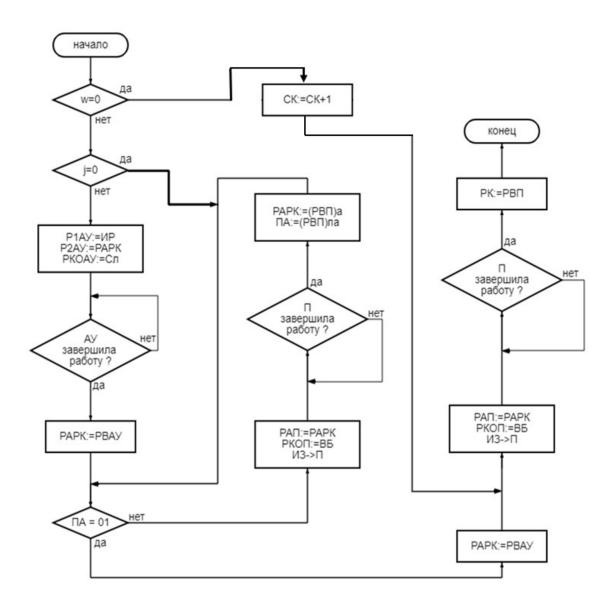


Рисунок 2.1 – Алгоритм функционирования

Синтез микропрограммного автомата по граф — схеме алгоритма, приведенный на рисунке 2 .1, осуществлён в два этапа:

- 1) получение отмеченной ГСА;
- 2) построение графа автомата в виде списковых структур (таблицы переходов).

2.1 Кодированная ГСА

Таблица 2.1 – Кодирование логических выражений

	Выражение	Код выражения
w=0	X ₁	1
j=0	X ₂	2
АУ завершило работу?	X ₃	3
$\Pi A = 01$	X ₄	4
П завершила работу?	X 5	5

Таблица 2.2 – Кодирование управляющих сигналов

	Сигнал	Код сигнала
Р1АУ:=ИР		
Р2АУ:=РАРК	y ₁	01
РКОАУ:=Сл		
РАРК:=РВАУ	y ₂	02
РАП:=РАРК	y ₃	03
РКОП:=Вб	V.	04
И3->П	У4	04
РАРК:=(РВП)а	V-	05
ПА:=(РВП)па	y 5	03
СК:=СК+1	y ₆	06
СК:=РАРК	y ₇	07
РАП:=СК	y ₈	10
РК:=РВП	y 9	11

На рисунке 2.2 представлена полученная кодированная граф-схема алгоритма.

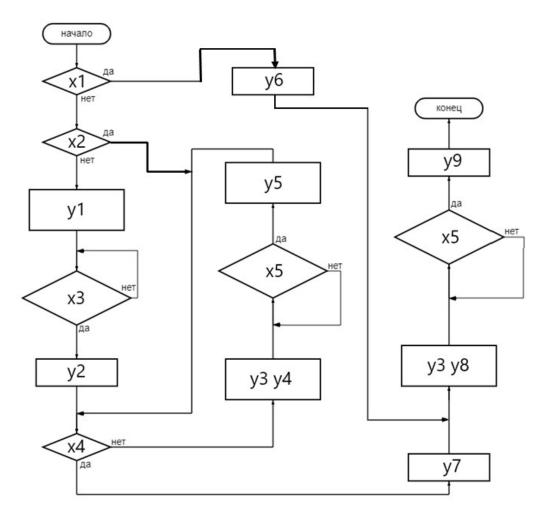


Рисунок 2.2 - Кодированная ГСА

2.2 Отмеченная ГСА

На этапе получения отмеченной ГСА входы вершин отмечены символами $a_1,\,a_2,\,\dots$, a_H по следующим правилам:

- 1) символом a_1 обозначен вход вершины, следующий за начальной, а также вход конечной вершины;
- 2) символами a_2, \ldots, a_H обозначаются входы всех вершин, следующих за операторными;
 - 3) если вход вершины обозначен, то только одним символом;
- 4) входы различных вершин, за исключением конечного, обозначаются различными символами.

Таким образом, отмеченная ГСА представлена на рисунке 2. 3.

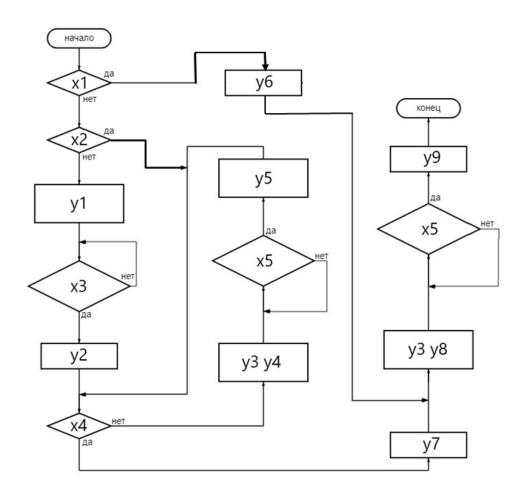


Рисунок 2.3 – Отмеченная ГСА

2.3 Структурный синтез автомата

Кодирование состояний автомата приведено в таблице 2.3.

Таблица 2.3 – Кодирование состояний

	00	01	10	11
0	a_I	a_2	a_3	a_4
1	a_5	a_6		

Из таблицы переходов следует, что в автомате количество состояний M=6, таким образом число элементов памяти составляет: $m=\log_2 M = \log_2 6 = 3$.

Для синтеза использованы D триггеры.

С использованием отмеченной ГСА построена обратная структурная таблица, представленная в таблице 2.4, в которой сначала записываются все переходы в первое состояние, затем во второе и т.д.

В первом столбце указываются все состояния a_m , из которых осуществляются переходы. Коды этих состояний $K(a_m)$ после кодирования занесены во второй столбец. В третьем и четвёртом столбцах записаны состояния a_s , в которых произошли переходы, и их коды $K(a_s)$. Пятый и шестой столбцы содержат входные $X(a_r,a_s)$ и выходные сигналы $Y(a_m,a_s)$, входящие в пути перехода. В седьмом столбце таблицы перечислены обязательные функции возбуждения $\Psi(a_m,a_s)$, вырабатываемые на соответствующих переходах для D-триггера и в восьмом - номер пути перехода для удобства идентификации.

Таблица 2.4 – Обратная структурная таблица

a_m	$K(a_m)$	a_s	$K(a_s)$	$X(a_m, a_s)$	$Y(a_m, a_s)$	$\Psi(a_m, a_s)$	P	
a_6	101	a_1	000	x_5	<i>y</i> ₉	-	1	$\left.\right\} \Phi(a_{l})$
a_I	000	a_2	001	$\overline{x}_1 \overline{x}_2$	y_1	D_I	2	
a_2	001	a_2	001	$\overline{x_3}$	-	D_I	3	$\int \Phi(a_2)$
a_2	001	a_3	010	x_3	y_2	D_2	4	$\Phi(a_3)$
a_4	011	a_3	011	x_5	y_5	D_2	5	
a_{l}	011	<i>a</i> ₄	011	$\overline{x_1} x_2 \overline{x_4}$	<i>y</i> ₃ <i>y</i> ₄	$D_1 D_2$	6	
a_3	010	a_4	011	\overline{x}_4	<i>y</i> ₃ <i>y</i> ₄	$D_1 D_2$	7	$\Phi(a_4)$
a_4	011	a_4	011	$\overline{X_5}$	-	$D_1 D_2$	8	
a_{I}	000	a_5	100	x_1	<i>y</i> ₆	D_3	9	
a_{I}	000	a_5	100	$\overline{x_1}x_2x_4$	<i>y</i> ₇	D_3	10	$\Phi(a_5)$
a_3	010	a_5	100	x_4	<i>y</i> ₇	D_3	11	
a_5	100	a_6	101	1	<i>y</i> ₃ <i>y</i> ₈	$D_1 D_3$	12	$\int \Phi(a_6)$
a_6	101	a_6	101	\overline{x}_5	_	$D_1 D_3$	13	

2.4 Функционально-логическая схема автомата

На основании полученной обратной структурной таблицы получается функционально-логическая схема автомата, изображенная на рисунке 2.4.

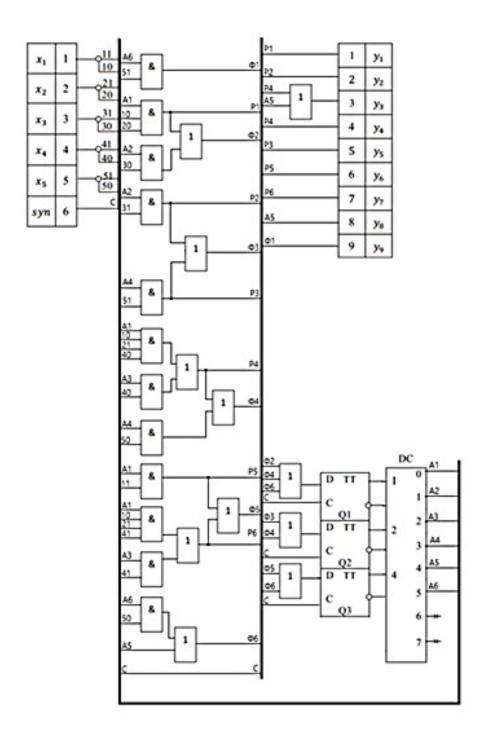


Рисунок 2.4 – Функционально-логическая схема автомата

3 Синтез автомата с программируемой логикой

3.1 Адресация микрокоманд с двумя принудительными адресами

Для того, чтобы реализовать цифровой автомат с программируемой логикой с двумя принудительными адресами, составлен набор микрокоманд. Структура каждой микрокоманды включает в себя: микрооперации, выполняемые за один такт, код проверяемого логического условия и два адреса следующих микрокоманд. Адрес следующей микрокоманды определен в зависимости от кода логического условия КЛУ и значения соответствующего логического условия х_i, либо полем A1, либо полем A2.

Кодировка микропрограммы выполнена в восьмеричной системе счисления. Набор микрокоманд представлен в таблице 3.1.

Длина микрокоманды составила N=33 бит (11 символов \times 3бита). Объём занимаемой ёмкости постоянной памяти при данном способе адресации микрокоманд составил E=495 бит (15 микрокоманд \times 33 бит).

Пример формирования микропрограммы с двумя принудительными адресами представлен на рисунке 3.1.

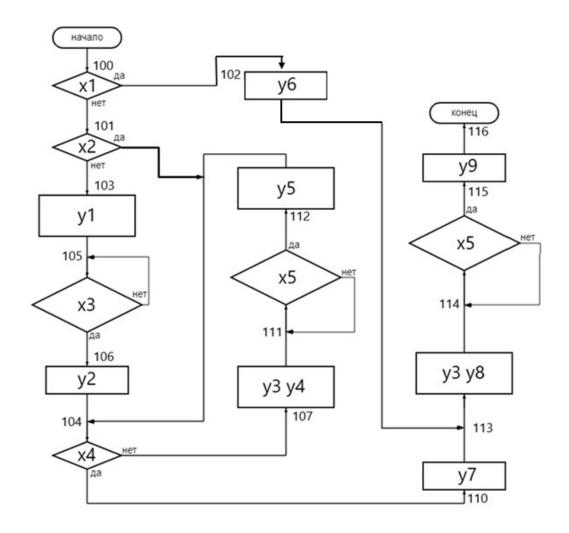


Рисунок 3.1 – Граф структура микропрограммы с двумя принудительными адресами

Таблица 3.1 – Набор микрокоманд

A_{T}	Y_1	Y_2	КЛУ	A_1	A_2
100	00	00	1	101	102
101	00	00	2	103	104
102	06	00	0	113	000
103	01	00	3	105	106
104	00	00	4	107	110
105	00	00	3	105	106
106	02	00	4	107	110
107	03	04	5	111	112
110	07	00	0	113	000
111	00	00	5	111	112
112	05	00	4	107	110
113	03	10	5	114	115
114	00	00	5	114	115
115	11	00	0	116	000
116	77	00	0	000	000

stop

3.2 Адресация микрокоманд с одним принудительным адресом (инкремент текущего адреса)

При данном способе адресации для формирования адреса следующей микрокоманды отводится единственное поле адреса перехода Ар.

Если поле КЛУ=0, то значение Ар, безусловно, определяет адрес следующей микрокоманды. Если поле кода логического условия не нулевое, то адрес следующей микрокоманды реализуется условным переходом: если значение проверяемого логического условия x_i =0, то РАПП:=Ар, если x_i =1, то второй адрес перехода определяется инкрементом адреса текущей микрокоманды, хранящегося в регистре адреса постоянной памяти с функцией инкрементного счётчика (AT +1).

Длина микрокоманды составила N=24 бит. Объём занимаемой ёмкости постоянной памяти при данном способе адресации микрокоманд составил E=480 бит.

Набор микрокоманд представлен в таблице 3.2.

Пример формирования микропрограммы с одним принудительным адресом показан на рисунке 3.2 .

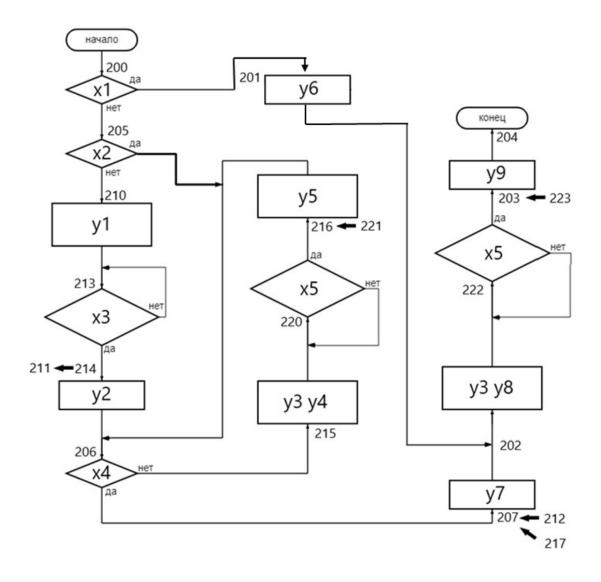


Рисунок 3.2 – Структурный граф микропрограммы с одним принудительным адресом (инкремент текущего адреса)

Таблица 3.2 – Набор микрокоманд

1					
	A_p	КЛУ	Y_2	\mathbf{Y}_1	\mathbf{A}_{T}
	202	1	00	00	200
	202	0	00	06	201
	222	5	10	03	202
	204	0	00	11	203
stop	000	0	00	77	204
	210	2	00	00	205
	215	4	00	00	206
jump	202	0	00	07	207
	213	3	00	01	210
	215	4	00	02	211
jump	207	0	00	00	212
	213	3	00	00	213
jump	211	0	00	00	214
	220	5	04	03	215
	215	4	00	05	216
	207	0	00	00	217
	220	5	00	00	220
jump	216	0	00	00	221
	222	5	00	00	222
jump	203	0	00	00	223

3.3 Адресация микрокоманд с одним принудительным адресом (инкремент адреса перехода)

Адресация с инкрементом адреса перехода отличается от адресации с инкрементом текущего адреса лишь способом формирования адреса следующей микрокоманды при условном переходе. Если значение проверяемого логического условия $x_i = 0$, то РАПП := Ар, если $x_i = 1$, то второй адрес перехода определяется инкрементом адреса перехода Ар+1, записанного в регистре микрокоманды.

Длина микрокоманды составила N=23 бит. Объём занимаемой ёмкости постоянной памяти при данном способе адресации микрокоманд составил E=391 бит.

Набор микрокоманд представлен в таблице 3.3.

Пример формирования микропрограммы с одним принудительным адресом показан на рисунке 3.3.

Рисунок 3.3 – Структурный граф микропрограммы с одним принудительным выходом (инкримент адреса перехода)

Таблица 3.3 – Набор микрокоманд

A _T	Y_1	Y_2	КЛУ	A_p
300	00	00	1	302
301	XX	XX	X	XXX
302	00	00	2	304
303	06	00	0	314
304	01	00	0	306
305	00	00	4	310
306	00	00	3	306
307	02	00	4	310
310	03	04	5	312
311	07	00	0	314
312	00	00	5	312
313	05	00	4	310
314	03	10	5	316
315	XX	XX	X	XXX
316	00	00	5	316
317	11	00	0	320
320	77	00	0	000

stop

3.4 Естественная адресация

В данном способе вводится два типа микрокоманд:

- 1) операторная микрокоманда, с признаком d=0;
- 2) условная микрокоманда, с признаком d=1.

Структура операторной микрокоманды: признак микрокоманды, микрооперации, выполняемые за один такт. Структура условной микрокоманды: признак микрокоманды, код проверяемого логического условия, адрес следующей микрокоманды.

При естественной адресации адрес следующей микрокоманды - A_T +1. При условном переходе, если проверяемое логическое условие x_i = 0, то следующей выполняется микрокоманда, адрес которой указан в адресном поле текущей микрокоманды; если x_i = 1, то следующей выполняется микрокоманда с инкрементом текущего адреса (A_T +1).

Для данного способа адресации длина микрокоманды составила N=16 бит, а объём занимаемой ёмкости постоянной памяти – E=288 бита.

Набор микрокоманд представлен в таблице 3.4.

Пример формирования микропрограммы с одним принудительным адресом показан на рисунке 3.4.

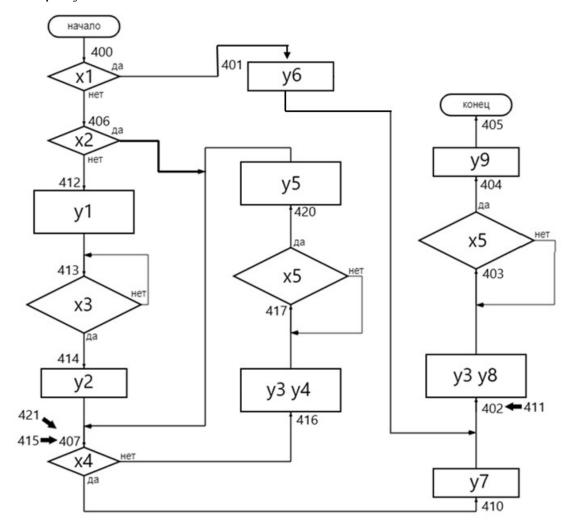


Рисунок 3.4 – Естественная адресация

Таблица 3.4 – Набор микрокоманд

A_T	d=0	Y		
	d=1	КЛУ	A_P	
400	1	1	406	
401	0	0	006	
402	0	3	010	
403	1	5	403	
404	0	0	011	
405	0	7	000	
406	1	2	412	
407	1	4	416	
410	0	0	007	
411	1	0	402	
412	0	0	001	
413	1	3	413	
414	0	0	002	
415	1	0	407	
416	1	0	004	
417	1	5	417	
420	0	0	005	
421	1	0	407	

stop

jump

jump

Заключение

В данной курсовой работе:

- 1) выполнен синтез цифрового автомата по каноническому методу структурного синтеза с построением функционально - логической схемы автомата;
- 2) Реализован цифровой синтез по ГСА с жесткой логикой. При реализации пользовались составленной обратной структурой таблицей переходов, по которой построена функционально логическая схема с использованием полной дешифрации состояний;
- Реализован синтез автомата с программируемой логикой тремя способами, наиболее оптимальной оказалась естественная адресация, т.к. объем занимаемой емкости памяти минимален E = 288 бит, но проигрывает по быстродействию

Список литературы

- 1 Крушный В. В. Синтез цифровых управляющих автоматов: Учебное пособие. М.: НИЯУ МИФИ, 2011. 164 с.
 - 2 ΓΟCT 2.105
 - 3 Д.Э. Розенталь Русский язык. Грамматика.